Newswise – There are many places in the world that are difficult for researchers to study, largely because it is too dangerous for humans to get to.
Now researchers at the University of Washington have come up with a possible solution: a 98 milligram sensor system – about a tenth the weight of a jelly bean or less than a hundredth of an ounce – that can ride aboard a small drone or an insect like a moth, until it reaches its destination. Then, when a researcher sends a Bluetooth command, the sensor is released from its pole and can fall and land up to 72 feet – say from the sixth floor of a building – without breaking. As soon as the sensor is on the ground, it can record data such as temperature or humidity for almost three years.
The team presented this research on September 24th at MobiCom 2020.
“We saw examples of the military dumping food and essential supplies from helicopters in disaster areas. We took inspiration from this and asked the question: Can we use a similar method to determine the conditions in regions that are too small or too dangerous for them? is? ” a person to go to? “said senior author Shyam Gollakota, a UW associate professor at the Paul G. Allen School of Computer Science and Engineering.” This is the first time anyone has shown that sensors can be released by tiny drones or insects like moths, that move better than any drone through narrow spaces and withstand much longer flights. ”
While industrial-size drones use grippers to carry their payloads, the sensor is held to the drone or insect using a magnetic pen surrounded by a thin wire coil. To release the sensor, a researcher on the ground sends a wireless command that creates a current through the coil to create a magnetic field. The magnetic field causes the magnetic pen to pop out and sends the sensor on its way.
The sensor was constructed with its battery, the heaviest part, in a corner. If the sensor falls, it will turn the corner with the battery, creating additional drag force and slowing down the descent. Combined with the low weight of the sensor, the maximum fall speed remains at 11 miles per hour, so the sensor can safely hit the ground.
The researchers intend to use this system to create a sensor network within a study area. For example, researchers could use drones or insects to scatter sensors over a forest or farm that they want to monitor.
Once a mechanism for recovering sensors after the batteries are discharged has been developed, the team believes the system can be deployed in a wide variety of locations, including environmentally sensitive areas. The researchers plan to replace the battery with a solar cell and to automate the use of sensors in industrial environments.
Vikram Iyer, PhD student in electrical and computer engineering; Maruchi Kim, Allen School PhD student; Shirley Xue, a PhD student at Allen School; and Anran Wang, a graduate student at Allen School, are also co-authors of this paper. This research was funded by the National Science Foundation.
###
License numbers: CNS-1812554, CNS-1452494, CNS-182314
Additional quote:
“Our approach is inspired by nature, where very small insects like ants can survive falls hundreds of meters,” said lead author Vikram Iyer, a UW graduate student in the electrical and computer engineering department. “Due to the incredibly light weight of an ant, the force of gravity is low and the air resistance slows its descent considerably.”
Guide to pronunciation of names:
Shyam Gollakota – Shyam aim-uh-coat-uh
Vikram Iyer – VIK Rum EYES