Quick and long-term prices of inbreeding within the lifelong-partnership in a termite

0
140
Short and long-term costs of inbreeding in the lifelong-partnership in a termite

  • Shellman-Reeve, J. S. Courting strategies and conflicts in a monogamous, biparental termite. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 137–144 (1999).

    Article 

    Google Scholar 

  • Boomsma, J. J. Beyond promiscuity: mate-choice commitments in social breeding. Philos. Trans. R. Soc. B: Biol. Sci. 368 (2013).

  • Nichols, H. J. The causes and consequences of inbreeding avoidance and tolerance in cooperatively breeding vertebrates. J. Zool. 303, 1–14 (2017).

    Article 

    Google Scholar 

  • Clutton-Brock, T. H. Female transfer and inbreeding avoidance in social mammals. Nature 337, 70–72 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolff, J. O. Parents suppress reproduction and stimulate dispersal in opposite-sex juvenile white-footed mice. Nature 359, 409–410 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abbott, D. In Primate Social Conflict (eds W. A. Mason & S. P. Mendoza) 331–372 (State University of New York Press, 1993).

  • Koenig, W. D., Haydock, J. & Stanback, M. T. Reproductive roles in the cooperatively breeding acorn woodpecker: incest avoidance versus reproductive competition. Am. Nat. 151, 243–255 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanby, J. P. & Bygott, J. D. Emigration of subadult lions. Anim. Behav. 35, 161–169 (1987).

    Article 

    Google Scholar 

  • Brooked, M. G., Rowley, I., Adams, M. & Baverstock, P. R. Promiscuity: an inbreeding avoidance mechanism in a socially monogamous species? Behav. Ecol. Sociobiol. 26, 191–199 (1990).

    Article 

    Google Scholar 

  • Amos, B., Schlotterer, C. & Tautz, D. Social structure of pilot whales revealed by analytical DNA proftling. Science 260, 670–672 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sillero-Zubiri, C., Gottelli, D. & Macdonald, D. W. Male philopatry, extra-pack copulations and inbreeding avoidance in Ethiopian wolves (Canis simensis). Behav. Ecol. Sociobiol. 38, 331–340 (1996).

    Article 

    Google Scholar 

  • Husseneder, C., Simms, D. M. & Ring, D. R. Genetic diversity and genotypic differentiation between the sexes in swarm aggregations decrease inbreeding in the Formosan subterranean termite. Insectes Sociaux 53, 212–219 (2006).

    Article 

    Google Scholar 

  • Blouin, S. F. & Blouin, M. Inbreeding avoidance behaviors. Trends Ecol. Evol. 3, 230–233 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pusey, A. & Wolf, M. Inbreeding avoidance in animals. Trends Ecol. Evol. 11, 201–206 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gerlach, G. & Lysiak, N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim. Behav. 71, 1371–1377 (2006).

    Article 

    Google Scholar 

  • Hurst, J. L. et al. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vargo, E. L. & Husseneder, C. In Biology of termites: A modern synthesis (eds D.E. Bignell, Yves Roisin, & Nathan Lo) 133–164 (Springer, 2011).

  • Shellman-Reeve, J. S. Dynamics of biparental care in the dampwood termite, Zootermopsis nevadensis (Hagen): response to nitrogen availability. Behav. Ecol. Sociobiol. 26, 389–397 (1990).

    Article 

    Google Scholar 

  • Cole, E. L., Ilieş, I. & Rosengaus, R. B. Competing physiological demands during incipient colony foundation in a social insect: consequences of pathogenic stress. Front. Ecol. Evol. 6 (2018).

  • Traniello, J. F. A., Rosengaus, R. B. & Savoie, K. The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc. Natl Acad. Sci. 99, 6838–6842 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosengaus, R. B., Traniello, J. F. A. & Bulmer, M. In biology of termites: a modern synthesis (eds D. E. Bignell, Yves Roisin & Nathan Lo) 165–191 (Springer, 2011).

  • Cole, E. L., Bayne, H. & Rosengaus, R. B. Young but not defenceless: antifungal activity during embryonic development of a social insect. R. Soc. Open Sci. 7, 191418–191418 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosengaus, R. B. & Traniello, J. F. Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behav. Ecol. Sociobiol. 50, 546–556 (2001).

    Article 

    Google Scholar 

  • Cole, E. L. & Rosengaus, R. B. Pathogenic dynamics during colony ontogeny reinforce potential drivers of termite eusociality: mate assistance and biparental care. Front. Ecol. Evol. 7 (2019).

  • Chouvenc, T. The relative importance of queen and king initial weights in termite colony foundation success. Insectes Sociaux 66, 177–184 (2019).

    Article 

    Google Scholar 

  • Matsuura, K. & Kobayashi, N. Termite queens adjust egg size according to colony development. Behav. Ecol. 21, 1018–1023 (2010).

    Article 

    Google Scholar 

  • Calleri, D. V., McGrail Reid, E., Rosengaus, R. B., Vargo, E. L. & Traniello, J. F. A. Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc. R. Soc. B: Biol. Sci. 273, 2633–2640 (2006).

    Article 

    Google Scholar 

  • DeHeer, C. J. & Vargo, E. L. An indirect test of inbreeding depression in the termites Reticulitermes flavipes and Reticulitermes virginicus. Behav. Ecol. Sociobiol. 59, 753–761 (2006).

    Article 

    Google Scholar 

  • Aguero, C. M., Eyer, P.-A., Martin, J. S., Bulmer, M. S. & Vargo, E. L. Natural variation in colony inbreeding does not influence susceptibility to a fungal pathogen in a termite. Ecol. Evol. 11, 3072–3083 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosengaus, R. B. & Traniello, J. F. Disease risk as a cost of outbreeding in the termite Zootermopsis angusticollis. Proc. Natl Acad. Sci. 90, 6641–6645 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eyer, P.-A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol. Ecol. 30, 3948–3964 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Perdereau, E. et al. Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinotte, V. M. et al. Female-biased sex allocation and lack of inbreeding avoidance in Cubitermes termites. Ecol. Evolution 11, 5598–5605 (2021).

    Article 

    Google Scholar 

  • Li, G., Gao, Y., Sun, P., Lei, C. & Huang, Q. Factors affecting mate choice in the subterranean termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). J. Ethol. 31, 159–164 (2013).

    Article 

    Google Scholar 

  • Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. Mechanisms of inbreeding avoidance in the one-piece drywood termite Neotermes chilensis. Insectes Sociaux 62, 237–245 (2015).

    Article 

    Google Scholar 

  • Miyaguni, Y., Agarie, A., Sugio, K., Tsuji, K. & Kobayashi, K. Caste development and sex ratio of the Ryukyu drywood termite Neotermes sugioi and its potential mechanisms. Sci. Rep. 11, 15037 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nutting, W. L. In Biology of Termites (eds Kumar Krishna & Frances M. Weesner) 233–282 (Academic Press, 1969).

  • Fougeyrollas, R. et al. Dispersal and mating strategies in two neotropical soil-feeding termites, Embiratermes neotenicus and Silvestritermes minutus (Termitidae, Syntermitinae). Insectes Sociaux 65, 251–262 (2018).

    Article 

    Google Scholar 

  • Shellman-Reeve, J. S. Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim. Behav. 61, 869–876 (2001).

    Article 

    Google Scholar 

  • Zhang, Z.-Y. et al. Biochemical, molecular, and morphological variations of flight muscles before and after dispersal flight in a eusocial termite, Reticulitermes chinensis. Insect Sci. 28, 77–92 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mullins, A. J. et al. Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 108, 707–719 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Goodisman, M. A. D. & Crozier, R. H. Population and colony genetic structure of the primitive termite Mastotermes Darwiniensis. Evolution 56, 70–83 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Schmidt, A. M., Jacklyn, P. & Korb, J. Isolated in an ocean of grass: low levels of gene flow between termite subpopulations. Mol. Ecol. 22, 2096–2105 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Thompson, G. J., Lenz, M., Crozier, R. H. & Crespi, B. J. Molecular-genetic analyses of dispersal and breeding behaviour in the Australian termite Coptotermes lacteus: evidence for non-random mating in a swarm-dispersal mating system. Aust. J. Zool. 55, 219–227 (2007).

    Article 
    CAS 

    Google Scholar 

  • Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • Tranter, C., LeFevre, L., Evison, S. E. F. & Hughes, W. O. H. Threat detection: contextual recognition and response to parasites by ants. Behav. Ecol. 26, 396–405 (2014).

    Article 

    Google Scholar 

  • Hussain, A., Tian, M.-Y., He, Y.-R., Bland, J. M. & Gu, W.-X. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biol. Control 55, 166–173 (2010).

    Article 

    Google Scholar 

  • Yanagawa, A., Imai, T., Akino, T., Toh, Y. & Yoshimura, T. Olfactory cues from pathogenic fungus affect the direction of motion of termites, Coptotermes formosanus. J. Chem. Ecol. 41, 1118–1126 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosengaus, R. B., James, L.-T., Hartke, T. R. & Brent, C. S. Mate preference and disease risk in Zootermopsis angusticollis (Isoptera: Termopsidae). Environ. Entomol. 40, 1554–1565 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Beani, L. et al. Cuticular hydrocarbons as cues of sex and health condition in Polistes dominula wasps. Insectes Sociaux 66, 543–553 (2019).

    Article 

    Google Scholar 

  • Waser, P. M., Austad, S. N. & Keane, B. When should animals tolerate inbreeding? Am. Nat. 128, 529–537 (1986).

    Article 

    Google Scholar 

  • Bengtsson, B. O. Avoiding inbreeding: at what cost? J. Theor. Biol. 73, 439–444 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lehmann, L. & Perrin, N. Inbreeding avoidance through kin recognition: Choosy females boost male dispersal. Am. Nat. 162, 638–652 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Basalingappa, S. Environmental hazards to reproductives of Odontotermes assmuthi Holgrem. Indian Zool. 1, 45–50 (1970).

    Google Scholar 

  • Darlington, J., Sands, W. & Pomeroy, D. Distribution and post-settlement survival in the field by reproductive pairs of Hodotermes mossambicus hagen (isoptera, hodotermitida). Insectes Sociaux 24, 353–358 (1977).

    Article 

    Google Scholar 

  • Dial, K. P. & Vaughan, T. A. Opportunistic predation on alate termites in Kenya. Biotropica 19, 185–187 (1987).

    Article 

    Google Scholar 

  • Korb, J. & Salewski, V. Predation on swarming termites by birds. Afr. J. Ecol. 38, 173–174 (2000).

    Article 

    Google Scholar 

  • Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. ReproduCtion–immunity Trade-offs In Insects. Annu. Rev. Entomol. 61, 239–256 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Calleri, D. II, Rosengaus, R. & Traniello, J. A. Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: The survival advantage of nestmate pairs. Naturwissenschaften 92, 300–304 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fei, H. X. & Henderson, G. Comparative study of incipient colony development in the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera,Rhinotermitidae). Insectes Sociaux 50, 226–233 (2003).

    Article 

    Google Scholar 

  • Rosengaus, R. B., Cornelisse, T., Guschanski, K. & Traniello, J. F. A. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis. Naturwissenschaften 94, 25–33 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosengaus, R. B., Traniello, J. F. A., Chen, T., Brown, J. J. & Karp, R. D. Immunity in a social insect. Naturwissenschaften 86, 588–591 (1999).

    Article 
    CAS 

    Google Scholar 

  • Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79 (2017).

    Article 
    CAS 

    Google Scholar 

  • Eyer, P.-A. et al. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol. Ecol. 27, 4711–4724 (2018).

    PubMed 

    Google Scholar 

  • Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crnokrak, P. & Spencer, C. H. B. Perspective: purging the genetic load. A review of the experimental evidence. Evolution 56, 2347–2358 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Day, S. B., Bryant, E. H. & Meffert, L. M. The influence of variable rates of inbreeding on fitness, environmental responsiveness, and evolutionary potential. Evolution 57, 1314–1324 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Syren, R. M. & Luykx, P. Permanent segmental interchange complex in the termite Incisitermes schwarzi. Nature 266, 167–168 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fontana, F. Multiple reciprocal chromosomal translocations and their role in the evolution of sociality in termites. Ethol. Ecol. Evolution 3, 15–19 (1991).

    Article 
    CAS 

    Google Scholar 

  • Matsuura, K. A test of the haplodiploid analogy hypothesis in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95, 646–649 (2002).

    Article 

    Google Scholar 

  • Yashiro, T. et al. Enhanced heterozygosity from male meiotic chromosome chains is superseded by hybrid female asexuality in termites. Proc. Natl. Acad. Sci. 118, e2009533118 (2021).

  • Charlesworth, B. & Wall, J. D. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 51–56 (1999).

    Article 

    Google Scholar 

  • Hellemans, S. et al. Widespread occurrence of asexual reproduction in higher termites of the Termes group (Termitidae: Termitinae). BMC Evol. Biol. 19, 131 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vargo, E. L., Labadie, P. E. & Matsuura, K. Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc. R. Soc. B: Biol. Sci. 279, 813–819 (2012).

    Article 

    Google Scholar 

  • Matsuura, K. et al. Queen succession through asexual reproduction in termites. Science 323, 1687–1687 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cremer, S., Pull, C. D. & Fürst, M. A. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Meyel, S., Körner, M. & Meunier, J. Social immunity: why we should study its nature, evolution and functions across all social systems. Curr. Opin. Insect Sci. 28, 1–7 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Cotter, S. C. & Kilner, R. M. Personal immunity versus social immunity. Behav. Ecol. 21, 663–668 (2010).

    Article 

    Google Scholar 

  • Liu, L., Zhao, X.-Y., Tang, Q.-B., Lei, C.-L. & Huang, Q.-Y. The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 11, 244 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Chouvenc, T. & Su, N. Y. When subterranean termites challenge the rules of fungal epizootics. Plos One 7, e34484 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, H. E., Meconcelli, S., Radek, R. & McMahon, D. P. Termites shape their collective behavioural response based on stage of infection. Sci. Rep. 8, 14433–14433 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cassidy, S. T. et al. Disease defences across levels of biological organization: individual and social immunity in acorn ants. Anim. Behav. 179, 73–81 (2021).

    Article 

    Google Scholar 

  • López-Uribe, M. M., Sconiers, W. B., Frank, S. D., Dunn, R. R. & Tarpy, D. R. Reduced cellular immune response in social insect lineages. Biol. Lett. 12, 20150984 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, S. et al. Evidence for reduced immune gene diversity and activity during the evolution of termites. Proc. R. Soc. B: Biol. Sci. 288, 20203168 (2021).

    Article 

    Google Scholar 

  • Viljakainen, L. et al. Rapid evolution of immune proteins in social insects. Mol. Biol. Evol. 26, 1791–1801 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meusemann, K., Korb, J., Schughart, M. & Staubach, F. No evidence for single-copy immune-gene specific signals of selection in termites. Front. Ecol. Evol. 8 (2020).

  • Otani, S., Bos, N. & Yek, S. H. Transitional complexity of social insect immunity. Front. Ecol. Evol. 4 (2016).

  • Barribeau, S. M. et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 16, 83 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Boer, R. A., Vega-Trejo, R., Kotrschal, A. & Fitzpatrick, J. L. Meta-analytic evidence that animals rarely avoid inbreeding. Nat. Ecol. Evol. 5, 949–964 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Szulkin, M., Stopher, K. V., Pemberton, J. M. & Reid, J. M. Inbreeding avoidance, tolerance, or preference in animals? Trends Ecol. Evol. 28, 205–211 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Fox, C. W. & Reed, D. H. Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evol. 65, 246–258 (2011).

    Article 

    Google Scholar 

  • Kokko, H., Ots, I. & Tregenza, T. When not to avoid inbreeding. Evolution 60, 467–475 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Zayed, A. & Packer, L. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc. Natl Acad. Sci. USA 102, 10742–10746 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, K. G. & Fletcher, D. J. C. Diploid male production — a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 19, 283–291 (1986).

    Article 

    Google Scholar 

  • Eyer, P.-A., Salin, J., Helms, A. M. & Vargo, E. L. Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes. Sci. Rep. 11, 4471 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).

    Article 
    PubMed 

    Google Scholar 

  • Wang, J. Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosengaus, R. B., Moustakas, J. E., Calleri, D. V. & Traniello, J. F. A. Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J. Insect Sci. 3, 31 (2003).

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, T. J., Burns, T., Lee, S. & Taylor, J. in PCR protocols: A guide to methods and applications (eds. M. A. Innis, D. H. Gelfand, J. J. Snisky, & T. J. White) 315–322 (Academic Press, 1990).

  • Aguero, C. M., Eyer, P.-A., Crippen, T. L. & Vargo, E. L. Reduced environmental microbial diversity on the cuticle and in the galleries of a subterranean termite compared to surrounding soil. Microb. Ecol. 81, 1054–1063 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4, 17–27 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Therneau, T. & Grambsch, P. Modeling Survival Data: Extending the Cox Model (Springer, 2000).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar