Publicity to polystyrene microplastic beads causes sex-specific poisonous results within the mannequin insect Drosophila melanogaster

0
170
Exposure to polystyrene microplastic beads causes sex-specific toxic effects in the model insect Drosophila melanogaster

  • Anbumani, S. & Kakkar, P. Ecotoxicological effects of microplastics on biota: a review. Environ. Sci. Pollut. Res. 25, 14373–14396 (2018).

    Article 

    Google Scholar 

  • Campanale, C., Massarelli, C., Savino, I., Locaputo, V. & Uricchio, V. F. A detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health 17(4), 1212 (2020).

    Article 

    Google Scholar 

  • MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science (80-). 373, 61–65 (2021).

    Article 
    ADS 

    Google Scholar 

  • Mammo, F. K. et al. Microplastics in the environment: Interactions with microbes and chemical contaminants. Sci. Total Environ. 743, 140518 (2020).

    Article 
    ADS 

    Google Scholar 

  • Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    Article 
    ADS 

    Google Scholar 

  • Murphy, F. & Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ. Pollut. 234, 487–494 (2018).

    Article 

    Google Scholar 

  • Järlskog, I. et al. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 729, 138950 (2020).

    Article 
    ADS 

    Google Scholar 

  • Rolsky, C., Kelkar, V., Driver, E. & Halden, R. U. Municipal sewage sludge as a source of microplastics in the environment. Curr. Opin. Environ. Sci. Heal. 14, 16–22 (2020).

    Article 

    Google Scholar 

  • Duis, K. & Coors, A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 28, 2 (2016).

    Article 

    Google Scholar 

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).

    Article 
    ADS 

    Google Scholar 

  • Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).

    Article 

    Google Scholar 

  • Jin, Y. et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 235, 322–329 (2018).

    Article 

    Google Scholar 

  • Paul-Pont, I. et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environ. Pollut. 216, 724–737 (2016).

    Article 

    Google Scholar 

  • Hamoir, J. et al. Effect of polystyrene particles on lung microvascular permeability in isolated perfused rabbit lungs: role of size and surface properties. Toxicol. Appl. Pharmacol. 190, 278–285 (2003).

    Article 

    Google Scholar 

  • Schmid, O. & Stoeger, T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J. Aerosol Sci. 99, 133–143 (2016).

    Article 
    ADS 

    Google Scholar 

  • Steinmetz, Z. et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?. Sci. Total Environ. 550, 690–705 (2016).

    Article 
    ADS 

    Google Scholar 

  • Gil-Delgado, J. A. et al. Presence of plastic particles in waterbirds faeces collected in Spanish lakes. Environ. Pollut. 220, 732–736 (2017).

    Article 

    Google Scholar 

  • Holland, E. R., Mallory, M. L. & Shutler, D. Plastics and other anthropogenic debris in freshwater birds from Canada. Sci. Total Environ. 571, 251–258 (2016).

    Article 
    ADS 

    Google Scholar 

  • Zhao, S., Zhu, L. & Li, D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci. Total Environ. 550, 1110–1115 (2016).

    Article 
    ADS 

    Google Scholar 

  • Huerta Lwanga, E. et al. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 50, 2685–2691 (2016).

    Article 
    ADS 

    Google Scholar 

  • Miyazaki, J. et al. Adhesion and internalization of functionalized polystyrene latex nanoparticles toward the yeast Saccharomyces cerevisiae. Adv. Powder Technol. 25, 1394–1397 (2014).

    Article 

    Google Scholar 

  • Miyazaki, J., Kuriyama, Y., Tokumoto, H., Konishi, Y. & Nomura, T. Cytotoxicity and behavior of polystyrene latex nanoparticles to budding yeast. Coll. Surf. A Physicochem. Eng. Asp. 469, 287–293 (2015).

    Article 

    Google Scholar 

  • Nomura, T. et al. Cytotoxicity and colloidal behavior of polystyrene latex nanoparticles toward filamentous fungi in isotonic solutions. Chemosphere 149, 84–90 (2016).

    Article 
    ADS 

    Google Scholar 

  • Al Naggar, Y. et al. Are honey bees at risk from microplastics?. Toxics 9, 109 (2021).

    Article 

    Google Scholar 

  • Chae, Y. & An, Y.-J. Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Mar. Pollut. Bull. 124, 624–632 (2017).

    Article 

    Google Scholar 

  • Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science (80-). 287, 2185–2195 (2000).

    Article 

    Google Scholar 

  • Myers, E. W. et al. A whole-genome assembly of Drosophila. Science (80-). 287, 2196–2204 (2000).

    Article 
    ADS 

    Google Scholar 

  • Dutta, M., Rajak, P. & Roy, S. Determination of chronic median lethal concentration of sodium fluoride in Drosophila melanogaster and exploring effect of sub-lethal concentrations on differential Hemocyte count. Proc. Zool. Soc. 72, 111–117 (2019).

    Article 

    Google Scholar 

  • Rajak, P., Khatun, S., Dutta, M., Mandi, M. & Roy, S. Chronic exposure to acephate triggers ROS-mediated injuries at organismal and sub-organismal levels of Drosophila melanogaster. Toxicol. Res. (Camb) 7, 874–887 (2018).

    Article 

    Google Scholar 

  • Mandi, M., Khatun, S., Rajak, P., Mazumdar, A. & Roy, S. Potential risk of organophosphate exposure in male reproductive system of a non-target insect model Drosophila melanogaster. Environ. Toxicol. Pharmacol. 74, 103308 (2020).

    Article 

    Google Scholar 

  • El Kholy, S. & Al Naggar, Y. Exposure to a sublethal concentration of CdO nanoparticles impairs the vision of the fruit fly (Drosophila melanogaster) by disrupting histamine synthesis and recycling mechanisms. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-24034-0 (2022).

    Article 

    Google Scholar 

  • Matthews, S. et al. Polystyrene micro- and nanoplastics affect locomotion and daily activity of Drosophila melanogaster. Environ. Sci. Nano 8, 110–121 (2021).

    Article 

    Google Scholar 

  • Demir, E. Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism. J. Toxicol. Environ. Heal. Part A 84, 649–660 (2021).

    Article 

    Google Scholar 

  • Alaraby, M., Abass, D., Domenech, J., Hernández, A. & Marcos, R. Hazard assessment of ingested polystyrene nanoplastics in Drosophila larvae. Environ. Sci. Nano 9, 1845–1857 (2022).

    Article 

    Google Scholar 

  • Liang, B. et al. Sex‐specific effects of PET‐MPs on Drosophila lifespan. Arch. Insect Biochem. Physiol. 110, (2022).

  • Shen, J. et al. Effects of PET microplastics on the physiology of Drosophila. Chemosphere 283, 131289 (2021).

    Article 
    ADS 

    Google Scholar 

  • Jimenez-Guri, E. et al. Transgenerational effects on development following microplastic exposure in Drosophila melanogaster. PeerJ 9, e11369 (2021).

    Article 

    Google Scholar 

  • Carvalho, M. J. A. & Mirth, C. K. Coordinating morphology with behavior during development: An integrative approach from a fly perspective. Front. Ecol. Evol. 3, (2015).

  • Lee, K. P., Kwon, S.-T. & Roh, C. Caterpillars use developmental plasticity and diet choice to overcome the early life experience of nutritional imbalance. Anim. Behav. 84, 785–793 (2012).

    Article 

    Google Scholar 

  • Yardy, L. & Callaghan, A. What the fluff is this? – Gammarus pulex prefer food sources without plastic microfibers. Sci. Total Environ. 715, 136815 (2020).

    Article 
    ADS 

    Google Scholar 

  • Song, Y. et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ. Pollut. 250, 447–455 (2019).

    Article 

    Google Scholar 

  • Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137 (2015).

    Article 
    ADS 

    Google Scholar 

  • Lei, L. et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environ. Sci. Nano 5, 2009–2020 (2018).

    Article 

    Google Scholar 

  • Zhang, Y., Wolosker, M. B., Zhao, Y., Ren, H. & Lemos, B. Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. Sci. Total Environ. 744, 140979 (2020).

    Article 
    ADS 

    Google Scholar 

  • Rafiee, M. et al. Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere 193, 745–753 (2018).

    Article 
    ADS 

    Google Scholar 

  • Okshevsky, M., Gautier, E., Farner, J. M., Schreiber, L. & Tufenkji, N. Biofilm formation by marine bacteria is impacted by concentration and surface functionalization of polystyrene nanoparticles in a species-specific manner. Environ. Microbiol. Rep. 12, 203–213 (2020).

    Article 

    Google Scholar 

  • Heinlaan, M. et al. Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total Environ. 707, 136073 (2020).

    Article 
    ADS 

    Google Scholar 

  • Pikuda, O., Xu, E. G., Berk, D. & Tufenkji, N. Toxicity assessments of micro- and nanoplastics can be confounded by preservatives in commercial formulations. Environ. Sci. Technol. Lett. 6, 21–25 (2019).

    Article 

    Google Scholar 

  • Parkash, R. & Ranga, P. Sex-specific divergence for adaptations to dehydration stress in Drosophila kikkawai. J. Exp. Biol. 216, 3301–3313 (2013).

    Article 

    Google Scholar 

  • El Kholy, S., Wang, K., El-Seedi, H. R. & Al Naggar, Y. Dopamine modulates Drosophila gut physiology, providing new insights for future gastrointestinal pharmacotherapy. Biology (Basel). 10, 983 (2021).

  • Siva-Jothy, J. A. & Vale, P. F. Viral infection causes sex-specific changes in fruit fly social aggregation behaviour. Biol. Lett. 15, 20190344 (2019).

    Article 

    Google Scholar 

  • Hudry, B., Khadayate, S. & Miguel-Aliaga, I. The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 530, 344–348 (2016).

    Article 
    ADS 

    Google Scholar 

  • Magwere, T., Chapman, T. & Partridge, L. Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila Melanogaster. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 59, 3–9 (2004).

    Article 

    Google Scholar 

  • Aggarwal, D. D. Physiological basis of starvation resistance in Drosophila leontia : analysis of sexual dimorphism. J. Exp. Biol. 217, 1849–1859 (2014).

    Article 

    Google Scholar 

  • Marron, M. T., Markow, T. A., Kain, K. J. & Gibbs, A. G. Effects of starvation and desiccation on energy metabolism in desert and mesic Drosophila. J. Insect Physiol. 49, 261–270 (2003).

    Article 

    Google Scholar 

  • Rion, S. & Kawecki, T. J. Evolutionary biology of starvation resistance: what we have learned from Drosophila. J. Evol. Biol. 20, 1655–1664 (2007).

    Article 

    Google Scholar 

  • van Herrewege, J. & David, J. R. Starvation and desiccation tolerances in Drosophila : Comparison of species from different climatic origins. Écoscience 4, 151–157 (1997).

    Article 

    Google Scholar 

  • Wan, Y., Wu, C., Xue, Q. & Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654, 576–582 (2019).

    Article 
    ADS 

    Google Scholar 

  • Deng, Y., Zhang, Y., Lemos, B. & Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 7, 46687 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ding, J., Zhang, S., Razanajatovo, R. M., Zou, H. & Zhu, W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ. Pollut. 238, 1–9 (2018).

    Article 

    Google Scholar 

  • Lee, K. P. & Jang, T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Funct. Ecol. 28, 1144–1155 (2014).

    Article 

    Google Scholar 

  • Wang, K. et al. Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastics exposure risks. J. Hazard. Mater. 402, 123828 (2021).

    Article 

    Google Scholar 

  • Deng, Y. et al. Microplastic polystyrene ingestion promotes the susceptibility of honeybee to viral infection. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c01619 (2021).

    Article 

    Google Scholar 

  • De Felice, B. et al. Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna. Chemosphere 231, 423–431 (2019).

    Article 
    ADS 

    Google Scholar 

  • Liu, H.-P. et al. Neuromuscular, retinal, and reproductive impact of low-dose polystyrene microplastics on Drosophila. Environ. Pollut. 292, 118455 (2022).

    Article 

    Google Scholar 

  • Medriano, C. A. & Bae, S. Acute exposure to microplastics induces metabolic disturbances and gut dysbiosis in adult zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 245, 114125 (2022).

    Article 

    Google Scholar 

  • von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335 (2012).

    Article 
    ADS 

    Google Scholar 

  • El Kholy, S., Giesy, J. P. & Al Naggar, Y. Consequences of a short-term exposure to a sub lethal concentration of CdO nanoparticles on key life history traits in the fruit fly (Drosophila melanogaster). J. Hazard. Mater. 410, 124671 (2021).

    Article 

    Google Scholar 

  • Dabour, K., Al Naggar, Y., Masry, S., Naiem, E. & Giesy, J. P. Cellular alterations in midgut cells of honey bee workers (Apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Sci. Total Environ. 651, 1356–1367 (2019).

    Article 
    ADS 

    Google Scholar 

  • Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

    Article 

    Google Scholar 

  • Proskuryakov, S. Y., Konoplyannikov, A. G. & Gabai, V. L. Necrosis: a specific form of programmed cell death?. Exp. Cell Res. 283, 1–16 (2003).

    Article 

    Google Scholar 

  • Fuller, S. & Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 50, 5774–5780 (2016).

    Article 
    ADS 

    Google Scholar 

  • Scheurer, M. & Bigalke, M. Microplastics in swiss floodplain soils. Environ. Sci. Technol. 52, 3591–3598 (2018).

    Article 
    ADS 

    Google Scholar 

  • Mack, J. O. & Zhang, Y. V. A rapid food-preference assay in Drosophila. J. Vis. Exp. https://doi.org/10.3791/62051 (2021).

    Article 

    Google Scholar 

  • Deshpande, S. A. et al. Quantifying Drosophila food intake: Comparative analysis of current methodology. Nat. Methods 11, 535–540 (2014).

    Article 

    Google Scholar 

  • Huey, R. B., Suess, J., Hamilton, H. & Gilchrist, G. W. Starvation resistance in Drosophila melanogaster: Testing for a possible ‘cannibalism’ bias. Funct. Ecol. 18, 952–954 (2004).

    Article 

    Google Scholar 

  • Li, Y. et al. The role of monoaminergic neurotransmission for metabolic control in the fruit fly Drosophila Melanogaster. Front. Syst. Neurosci. 11, (2017).