Anbumani, S. & Kakkar, P. Ecotoxicological effects of microplastics on biota: a review. Environ. Sci. Pollut. Res. 25, 14373–14396 (2018).
Google Scholar
Campanale, C., Massarelli, C., Savino, I., Locaputo, V. & Uricchio, V. F. A detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health 17(4), 1212 (2020).
Google Scholar
MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science (80-). 373, 61–65 (2021).
Google Scholar
Mammo, F. K. et al. Microplastics in the environment: Interactions with microbes and chemical contaminants. Sci. Total Environ. 743, 140518 (2020).
Google Scholar
Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).
Google Scholar
Murphy, F. & Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ. Pollut. 234, 487–494 (2018).
Google Scholar
Järlskog, I. et al. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 729, 138950 (2020).
Google Scholar
Rolsky, C., Kelkar, V., Driver, E. & Halden, R. U. Municipal sewage sludge as a source of microplastics in the environment. Curr. Opin. Environ. Sci. Heal. 14, 16–22 (2020).
Google Scholar
Duis, K. & Coors, A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 28, 2 (2016).
Google Scholar
Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).
Google Scholar
Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).
Google Scholar
Jin, Y. et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 235, 322–329 (2018).
Google Scholar
Paul-Pont, I. et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environ. Pollut. 216, 724–737 (2016).
Google Scholar
Hamoir, J. et al. Effect of polystyrene particles on lung microvascular permeability in isolated perfused rabbit lungs: role of size and surface properties. Toxicol. Appl. Pharmacol. 190, 278–285 (2003).
Google Scholar
Schmid, O. & Stoeger, T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J. Aerosol Sci. 99, 133–143 (2016).
Google Scholar
Steinmetz, Z. et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?. Sci. Total Environ. 550, 690–705 (2016).
Google Scholar
Gil-Delgado, J. A. et al. Presence of plastic particles in waterbirds faeces collected in Spanish lakes. Environ. Pollut. 220, 732–736 (2017).
Google Scholar
Holland, E. R., Mallory, M. L. & Shutler, D. Plastics and other anthropogenic debris in freshwater birds from Canada. Sci. Total Environ. 571, 251–258 (2016).
Google Scholar
Zhao, S., Zhu, L. & Li, D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci. Total Environ. 550, 1110–1115 (2016).
Google Scholar
Huerta Lwanga, E. et al. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 50, 2685–2691 (2016).
Google Scholar
Miyazaki, J. et al. Adhesion and internalization of functionalized polystyrene latex nanoparticles toward the yeast Saccharomyces cerevisiae. Adv. Powder Technol. 25, 1394–1397 (2014).
Google Scholar
Miyazaki, J., Kuriyama, Y., Tokumoto, H., Konishi, Y. & Nomura, T. Cytotoxicity and behavior of polystyrene latex nanoparticles to budding yeast. Coll. Surf. A Physicochem. Eng. Asp. 469, 287–293 (2015).
Google Scholar
Nomura, T. et al. Cytotoxicity and colloidal behavior of polystyrene latex nanoparticles toward filamentous fungi in isotonic solutions. Chemosphere 149, 84–90 (2016).
Google Scholar
Al Naggar, Y. et al. Are honey bees at risk from microplastics?. Toxics 9, 109 (2021).
Google Scholar
Chae, Y. & An, Y.-J. Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Mar. Pollut. Bull. 124, 624–632 (2017).
Google Scholar
Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science (80-). 287, 2185–2195 (2000).
Google Scholar
Myers, E. W. et al. A whole-genome assembly of Drosophila. Science (80-). 287, 2196–2204 (2000).
Google Scholar
Dutta, M., Rajak, P. & Roy, S. Determination of chronic median lethal concentration of sodium fluoride in Drosophila melanogaster and exploring effect of sub-lethal concentrations on differential Hemocyte count. Proc. Zool. Soc. 72, 111–117 (2019).
Google Scholar
Rajak, P., Khatun, S., Dutta, M., Mandi, M. & Roy, S. Chronic exposure to acephate triggers ROS-mediated injuries at organismal and sub-organismal levels of Drosophila melanogaster. Toxicol. Res. (Camb) 7, 874–887 (2018).
Google Scholar
Mandi, M., Khatun, S., Rajak, P., Mazumdar, A. & Roy, S. Potential risk of organophosphate exposure in male reproductive system of a non-target insect model Drosophila melanogaster. Environ. Toxicol. Pharmacol. 74, 103308 (2020).
Google Scholar
El Kholy, S. & Al Naggar, Y. Exposure to a sublethal concentration of CdO nanoparticles impairs the vision of the fruit fly (Drosophila melanogaster) by disrupting histamine synthesis and recycling mechanisms. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-24034-0 (2022).
Google Scholar
Matthews, S. et al. Polystyrene micro- and nanoplastics affect locomotion and daily activity of Drosophila melanogaster. Environ. Sci. Nano 8, 110–121 (2021).
Google Scholar
Demir, E. Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism. J. Toxicol. Environ. Heal. Part A 84, 649–660 (2021).
Google Scholar
Alaraby, M., Abass, D., Domenech, J., Hernández, A. & Marcos, R. Hazard assessment of ingested polystyrene nanoplastics in Drosophila larvae. Environ. Sci. Nano 9, 1845–1857 (2022).
Google Scholar
Liang, B. et al. Sex‐specific effects of PET‐MPs on Drosophila lifespan. Arch. Insect Biochem. Physiol. 110, (2022).
Shen, J. et al. Effects of PET microplastics on the physiology of Drosophila. Chemosphere 283, 131289 (2021).
Google Scholar
Jimenez-Guri, E. et al. Transgenerational effects on development following microplastic exposure in Drosophila melanogaster. PeerJ 9, e11369 (2021).
Google Scholar
Carvalho, M. J. A. & Mirth, C. K. Coordinating morphology with behavior during development: An integrative approach from a fly perspective. Front. Ecol. Evol. 3, (2015).
Lee, K. P., Kwon, S.-T. & Roh, C. Caterpillars use developmental plasticity and diet choice to overcome the early life experience of nutritional imbalance. Anim. Behav. 84, 785–793 (2012).
Google Scholar
Yardy, L. & Callaghan, A. What the fluff is this? – Gammarus pulex prefer food sources without plastic microfibers. Sci. Total Environ. 715, 136815 (2020).
Google Scholar
Song, Y. et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ. Pollut. 250, 447–455 (2019).
Google Scholar
Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137 (2015).
Google Scholar
Lei, L. et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environ. Sci. Nano 5, 2009–2020 (2018).
Google Scholar
Zhang, Y., Wolosker, M. B., Zhao, Y., Ren, H. & Lemos, B. Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. Sci. Total Environ. 744, 140979 (2020).
Google Scholar
Rafiee, M. et al. Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere 193, 745–753 (2018).
Google Scholar
Okshevsky, M., Gautier, E., Farner, J. M., Schreiber, L. & Tufenkji, N. Biofilm formation by marine bacteria is impacted by concentration and surface functionalization of polystyrene nanoparticles in a species-specific manner. Environ. Microbiol. Rep. 12, 203–213 (2020).
Google Scholar
Heinlaan, M. et al. Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total Environ. 707, 136073 (2020).
Google Scholar
Pikuda, O., Xu, E. G., Berk, D. & Tufenkji, N. Toxicity assessments of micro- and nanoplastics can be confounded by preservatives in commercial formulations. Environ. Sci. Technol. Lett. 6, 21–25 (2019).
Google Scholar
Parkash, R. & Ranga, P. Sex-specific divergence for adaptations to dehydration stress in Drosophila kikkawai. J. Exp. Biol. 216, 3301–3313 (2013).
Google Scholar
El Kholy, S., Wang, K., El-Seedi, H. R. & Al Naggar, Y. Dopamine modulates Drosophila gut physiology, providing new insights for future gastrointestinal pharmacotherapy. Biology (Basel). 10, 983 (2021).
Siva-Jothy, J. A. & Vale, P. F. Viral infection causes sex-specific changes in fruit fly social aggregation behaviour. Biol. Lett. 15, 20190344 (2019).
Google Scholar
Hudry, B., Khadayate, S. & Miguel-Aliaga, I. The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 530, 344–348 (2016).
Google Scholar
Magwere, T., Chapman, T. & Partridge, L. Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila Melanogaster. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 59, 3–9 (2004).
Google Scholar
Aggarwal, D. D. Physiological basis of starvation resistance in Drosophila leontia : analysis of sexual dimorphism. J. Exp. Biol. 217, 1849–1859 (2014).
Google Scholar
Marron, M. T., Markow, T. A., Kain, K. J. & Gibbs, A. G. Effects of starvation and desiccation on energy metabolism in desert and mesic Drosophila. J. Insect Physiol. 49, 261–270 (2003).
Google Scholar
Rion, S. & Kawecki, T. J. Evolutionary biology of starvation resistance: what we have learned from Drosophila. J. Evol. Biol. 20, 1655–1664 (2007).
Google Scholar
van Herrewege, J. & David, J. R. Starvation and desiccation tolerances in Drosophila : Comparison of species from different climatic origins. Écoscience 4, 151–157 (1997).
Google Scholar
Wan, Y., Wu, C., Xue, Q. & Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654, 576–582 (2019).
Google Scholar
Deng, Y., Zhang, Y., Lemos, B. & Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 7, 46687 (2017).
Google Scholar
Ding, J., Zhang, S., Razanajatovo, R. M., Zou, H. & Zhu, W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ. Pollut. 238, 1–9 (2018).
Google Scholar
Lee, K. P. & Jang, T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Funct. Ecol. 28, 1144–1155 (2014).
Google Scholar
Wang, K. et al. Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastics exposure risks. J. Hazard. Mater. 402, 123828 (2021).
Google Scholar
Deng, Y. et al. Microplastic polystyrene ingestion promotes the susceptibility of honeybee to viral infection. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c01619 (2021).
Google Scholar
De Felice, B. et al. Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna. Chemosphere 231, 423–431 (2019).
Google Scholar
Liu, H.-P. et al. Neuromuscular, retinal, and reproductive impact of low-dose polystyrene microplastics on Drosophila. Environ. Pollut. 292, 118455 (2022).
Google Scholar
Medriano, C. A. & Bae, S. Acute exposure to microplastics induces metabolic disturbances and gut dysbiosis in adult zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 245, 114125 (2022).
Google Scholar
von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335 (2012).
Google Scholar
El Kholy, S., Giesy, J. P. & Al Naggar, Y. Consequences of a short-term exposure to a sub lethal concentration of CdO nanoparticles on key life history traits in the fruit fly (Drosophila melanogaster). J. Hazard. Mater. 410, 124671 (2021).
Google Scholar
Dabour, K., Al Naggar, Y., Masry, S., Naiem, E. & Giesy, J. P. Cellular alterations in midgut cells of honey bee workers (Apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Sci. Total Environ. 651, 1356–1367 (2019).
Google Scholar
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).
Google Scholar
Proskuryakov, S. Y., Konoplyannikov, A. G. & Gabai, V. L. Necrosis: a specific form of programmed cell death?. Exp. Cell Res. 283, 1–16 (2003).
Google Scholar
Fuller, S. & Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 50, 5774–5780 (2016).
Google Scholar
Scheurer, M. & Bigalke, M. Microplastics in swiss floodplain soils. Environ. Sci. Technol. 52, 3591–3598 (2018).
Google Scholar
Mack, J. O. & Zhang, Y. V. A rapid food-preference assay in Drosophila. J. Vis. Exp. https://doi.org/10.3791/62051 (2021).
Google Scholar
Deshpande, S. A. et al. Quantifying Drosophila food intake: Comparative analysis of current methodology. Nat. Methods 11, 535–540 (2014).
Google Scholar
Huey, R. B., Suess, J., Hamilton, H. & Gilchrist, G. W. Starvation resistance in Drosophila melanogaster: Testing for a possible ‘cannibalism’ bias. Funct. Ecol. 18, 952–954 (2004).
Google Scholar
Li, Y. et al. The role of monoaminergic neurotransmission for metabolic control in the fruit fly Drosophila Melanogaster. Front. Syst. Neurosci. 11, (2017).