Brownlie, J. C. & Johnson, K. N. Symbiont-mediated protection in insect hosts. Trends Microbiol. 17, 348–354 (2009).
Google Scholar
Oliver, K. M., Moran, N. A. & Hunter, M. S. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc. Natl. Acad. Sci. U.S.A. 102, 12795–12800 (2005).
Google Scholar
Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. 107, 769–774 (2010).
Google Scholar
Hosokawa, T. & Fukatsu, T. Relevance of microbial symbiosis to insect behavior. Curr. Opin. Insect Sci. 39, 91–100 (2020).
Google Scholar
McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, 485–495 (2019).
Google Scholar
Teoh, M. C., Furusawa, G. & Veera Singham, G. Multifaceted interactions between the pseudomonads and insects: Mechanisms and prospects. Arch. Microbiol. 203, 1891–1915 (2021).
Google Scholar
Lehane, M. J. & Lehane, M. The Biology of Blood-Sucking in Insects (Cambridge University Press, 2005).
Google Scholar
Rio, R. V., Attardo, G. M. & Weiss, B. L. Grandeur alliances: Symbiont metabolic integration and obligate arthropod hematophagy. Trends Parasitol. 32, 739–749 (2016).
Google Scholar
Douglas, A. E. The B vitamin nutrition of insects: The contributions of diet, microbiome and horizontally acquired genes. Curr. Opin. Insect Sci. 23, 65–69 (2017).
Google Scholar
Husnik, F. Host-symbiont-pathogen interactions in blood-feeding parasites: Nutrition, immune cross-talk and gene exchange. Parasitology 145, 1294–1303 (2018).
Google Scholar
Michalkova, V., Benoit, J. B., Weiss, B. L., Attardo, G. M. & Aksoy, S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl. Environ. Microbiol. 80, 5844–5853 (2014).
Google Scholar
Puchta, O. Experimentelle untersuchungen uber die bedeutung der symbiose der kleiderlaus Pediculus vestimenti Burm. Z. Parasitenkd. 17, 1 (1955).
Google Scholar
Perotti, M. A., Kirkness, E. F., Reed, D. L. & Braig, H. R. Endosymbionts of lice. In Insect Symbiosis (eds Bourtzis, K. & Miller, T. A.) 205–219 (CRC Press, 2009).
Kirkness, E. F. et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc. Natl. Acad. Sci. U. S. A. 107, 12168–12173 (2010).
Google Scholar
Nikoh, N. et al. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc. Natl. Acad. Sci. U. S. A. 111, 10257–10262 (2014).
Google Scholar
Duron, O. et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr. Biol. 28, 1896–1902 (2018).
Google Scholar
Usinger, R. L. Monograph of Cimicidae (Hemiptera, Heteroptera) (Thomas Say Foundation, College Park, 1966).
Doggett, S. L., Miller, D. M. & Lee, C. Y. Introduction. In Advances in the Biology and Management of Modern Bed Bugs (eds Doggett, S. L. et al.) 1–7 (Wiley-Blackwell, 2018).
Google Scholar
Doggett, S. L., Dwyer, D. E., Peñas, P. F. & Russell, R. C. Bed bugs: Clinical relevance and control options. Clin. Microbiol. Rev. 25, 164–192 (2012).
Google Scholar
Hwang, S. J. E., Doggett, S. L. & Fernandez-Penas, P. Dermatology and immunology. In Advances in the Biology and Management of Modern Bed Bugs (eds Doggett, S. L. et al.) 109–116 (Wiley-Blackwell, 2018).
Lee, C. Y., Miller, D. M. & Doggett, S. L. Chemical control. In Advances in the Biology and Management of Modern Bed Bugs (eds Doggett, S. L. et al.) 285–310 (Wiley-Blackwell, 2018).
Google Scholar
Dang, K., Doggett, S. L., Singham, G. V. & Lee, C. Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasit. Vectors 10, 318 (2017).
Google Scholar
Romero, A. Insecticide resistance. In Advances in the Biology and Management of Modern Bed Bugs (eds Doggett, S. L. et al.) 273–280 (Wiley-Blackwell, 2018).
Google Scholar
Leong, X. Y. et al. Performance of commercial insecticide formulations against different developmental stages of insecticide-resistant tropical bed bugs (Hemiptera: Cimicidae). J. Econ. Entomol. 113, 353–366 (2020).
Google Scholar
Punchihewa, R., de Silva, W. P. P., Weeraratne, T. C. & Karunaratne, S. P. Insecticide resistance mechanisms with novel ‘kdr’ type gene mutations in the tropical bed bug Cimex hemipterus. Parasit. Vectors 12, 310 (2019).
Google Scholar
Zhao, Y., Feng, X., Li, M. & Qiu, X. The double-mutation (M918I+ L1014F) kdr allele is fixed in Cimex hemipterus populations in Guangxi, China. Bull. Entomol. Res. 110, 506–511 (2020).
Google Scholar
Zhu, F. et al. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci. Rep. 3, 1–8 (2013).
Kilpinen, O., Kristensen, M. & Jensen, K. M. V. Resistance differences between chlorpyrifos and synthetic pyrethroids in Cimex lectularius population from Denmark. Parasitol. Res. 109, 1461–1464 (2011).
Google Scholar
Karunaratne, S., Damayanthi, B., Fareena, M., Imbuldeniya, V. & Hemingway, J. Insecticide resistance in the tropical bedbug Cimex hemipterus. Pestic. Biochem. Physiol. 88, 102–107 (2007).
Google Scholar
Leong, X. Y., Singham, G. V., Shu-Chien, A. C., Doggett, S. L. & Lee, C. Y. Influences of exposure time and mortality assessment interval on bioassay results of insecticide-resistant tropical bed bugs (Hemiptera: Cimicidae). Insects 11, 640 (2020).
Google Scholar
Tawatsin, A. et al. Insecticide resistance in bedbugs in Thailand and laboratory evaluation of insecticides for the control of Cimex hemipterus and Cimex lectularius (Hemiptera: Cimicidae). J. Med. Entomol. 48, 1023–1030 (2011).
Google Scholar
Romero, A. & Anderson, T. D. High levels of resistance in the common bed bug, Cimex lectularius (Hemiptera: Cimicidae), to neonicotinoid insecticides. J. Med. Entomol. 53, 727–731 (2016).
Google Scholar
Busvine, J. R. Insecticide-resistance in bed-bugs. Bull. World Health Organ. 19, 1041 (1958).
Google Scholar
Dang, K., Doggett, S. L., Leong, X. Y., Veera Singham, G. & Lee, C. Y. Multiple mechanisms conferring broad-spectrum insecticide resistance in the tropical bed bug (Hemiptera: Cimicidae). J. Econ. Entomol. 114, 2473–2484 (2021).
Google Scholar
González-Morales, et al. Resistance to fipronil in the common bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 58, 1798–1807 (2021).
Google Scholar
Lilly, D. G., Latham, S. L., Webb, C. E. & Doggett, S. L. Cuticle thickening in a pyrethroid-resistant strain of the common bed bug, Cimex lectularius L.(Hemiptera: Cimicidae). PLoS ONE 11, e0153302 (2016).
Google Scholar
Dang, K. et al. Identification of putative kdr mutations in the tropical bed bug, Cimex hemipterus (Hemiptera: Cimicidae). Pest Manag. Sci. 71, 1015–1020 (2015).
Google Scholar
Gressel, J. Microbiome facilitated pest resistance: Potential problems and uses. Pest Mang. Sci. 74, 511–515 (2018).
Google Scholar
Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. 109, 8618–8622 (2012).
Google Scholar
Blanton, A. G. & Peterson, B. F. Symbiont-mediated insecticide detoxification as an emerging problem in insect pests. Fron. Microbiol. 11, 547108 (2020).
Google Scholar
Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
Google Scholar
Soh, L. S. & Singham, G. V. Cuticle thickening associated with fenitrothion and imidacloprid resistance and influence of voltage-gated sodium channel mutations on pyrethroid resistance in the tropical bed bug Cimex hemipterus. Pest Manag. Sci. 77, 5202–5212 (2021).
Google Scholar
Williamson, M. S., Martinez-Torres, D., Hick, C. A. & Devonshire, A. L. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 252, 51–60 (1996).
Google Scholar
Sonoda, S. et al. Frequencies of the M918I mutation in the sodium channel of the diamondback moth in China, Thailand and Japan and its association with pyrethroid resistance. Pestic. Biochem. Physiol. 102, 142–145 (2012).
Google Scholar
Boush, M. G. & Matsumura, F. Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. J. Econ. Entomol. 60, 918–920 (1967).
Google Scholar
Cheng, D. F. et al. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5, 13 (2017).
Google Scholar
Xie, X., Sun, B. & Gurr, G. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front. Microbiol. 9, 25 (2018).
Google Scholar
Pang, R. et al. A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS Genet. 14, e1007725 (2018).
Google Scholar
Akami, M. et al. Gut bacteria of the cowpea beetle mediate its resistance to dichlorvos and susceptibility to Lippia adoensis essential oil. Sci. Rep. 9, 6435 (2019).
Google Scholar
Pietri, J. E., Tiffany, C. & Liang, D. Disruption of the microbiota affects physiological and evolutionary aspects of insecticide resistance in the German cockroach, an important urban pest. PLoS ONE 13, e0207985 (2018).
Google Scholar
Li, Y., Liu, X. & Guo, H. Variations in endosymbiont infection between buprofezin-resistant and susceptible strains of Laodelphax striatellus (Fallén). Curr. Microbiol. 75, 709–715 (2018).
Google Scholar
Li, Y. et al. Background-dependent Wolbachia-mediated insecticide resistance in Laodelphax striatellus. Environ. Microbiol. 22, 2653–2663 (2020).
Google Scholar
Ghanim, M. & Kontsedalov, S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Mang. Sci. 65, 939–942 (2009).
Google Scholar
Shemshadian, A., Vatandoost, H., Oshaghi, M. A., Abai, M. R. & Djadid, N. D. Relationship between Wolbachia infection in Culex quinquefasciatus and its resistance to insecticide. Heliyon 7, e06749 (2021).
Google Scholar
Berticat, C., Rousset, F., Raymond, M., Berthomieu, A. & Weill, M. High Wolbachia density in insecticide-resistant mosquitoes. Proc. Royal Soc. Lond. B Biol. Sci. 269, 1413–1416 (2002).
Google Scholar
Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912 (2001).
Google Scholar
Wehrli, W., Knüsel, F. & Staehelin, M. Action of rifamycin on RNA-polymerase from sensitive and resistant bacteria. Biochem. Biophys. Res. Comm. 32, 284–288 (1968).
Google Scholar
Duan, X. Z. et al. Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome 8, 104 (2020).
Google Scholar
Audsley, M. D. et al. Wolbachia infection alters the relative abundance of resident bacteria in adult Aedes aegypti mosquitoes, but not larvae. Mol Ecol. 27, 297–309 (2017).
Google Scholar
Simhadri, R. K. et al. The gut commensal microbiome of Drosophila melanogaster is modified by the endosymbiont Wolbachia. mSphere 2, e00287 (2017).
Google Scholar
Puinean, A. M. et al. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid myzus persicae. PLoS Genet. 6, e1000999 (2010).
Google Scholar
Tang, T. et al. Antibiotics increased host insecticide susceptibility via collapsed bacterial symbionts reducing detoxification metabolism in the brown planthopper Nilaparvata lugens. J. Pest Sci. 94, 757–767 (2021).
Google Scholar
Parte, S. G., Mohekar, A. D. & Kharat, A. S. Microbial degradation of pesticide: A review. Afr. J. Microbiol. Res. 11, 992–1012 (2017).
Google Scholar
Chen, B. et al. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ. Int. 143, 105886 (2020).
Google Scholar
Dang, K., Singham, G. V., Doggett, S. L., Lilly, D. G. & Lee, C. Y. Effects of different surfaces and insecticide carriers on residual insecticide bioassays against bed bugs, Cimex spp. (Hemiptera: Cimicidae). J. Econ. Entomol. 110, 558–566 (2017).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Khalid, M. F., Lee, C. Y., Doggett, S. L. & Singham, G. V. Circadian rhythms in insecticide susceptibility, metabolic enzyme activity, and gene expression in Cimex lectularius (Hemiptera: Cimicidae). PLoS ONE 14, e0218343 (2019).
Google Scholar
Son-un, P. et al. Effect of relaxation of deltamethrin pressure on metabolic resistance in a pyrethroid-resistant Aedes aegypti (Diptera: Culicidae) strain harboring fixed P989P and G1016G kdr alleles. J. Med. Entomol. 55, 975–981 (2018).
Google Scholar
Lacey, L. & Brooks, W. Initial handling and diagnosis of diseased insects. In Manual of Techniques in Insect Pathology (ed. Lacey, L. L.) 1–15 (Academic Press, 1997).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
de Santis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).
Google Scholar
Hall, M. & Beiko, R. G. 16S rRNA gene analysis with QIIME2. In Microbiome Analysis 113–129 (Humana Press, 2018).
Google Scholar
Oliveros, J.C. Venny. An interactive tool for comparing lists with Venn’s diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html (2015).
Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).
Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol 57, 289–300 (1995).
Google Scholar