A tree of leaves: Phylogeny and historic biogeography of the leaf bugs (Phasmatodea: Phylliidae)

0
188

  • 1.

    Bedford, G. O. Biology and ecology of the Phasmatodea. Annu. Rev. Entomol. 23, 125–149 (1978).

  • 2.

    Umbers, K. D. L. et al. Deimatism: a neglected component of antipredator defence. Biol. Lett. 13, 20160936 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Vidal-García, M., O’Hanlon, J. C., Svenson, G. J. & Umbers, K. D. L. The evolution of startle displays: a case study in praying mantises. Proc. R. Soc. B Biol. Sci. 287, 20201016 (2020).

    Article 

    Google Scholar 

  • 4.

    Edmunds, M. The evolution of cryptic coloration in Insect Defenses (eds. Evans, D. L. & Schmidt, J. O.) 3–21 (State University of New York Press, 1990).

  • 5.

    Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry (Oxford University Press, 2004).

  • 6.

    Skelhorn, J., Rowland, H. M. & Ruxton, G. D. The evolution and ecology of masquerade. Biol. J. Linn. Soc. 99, 1–8 (2010).

    Article 

    Google Scholar 

  • 7.

    Grimaldi, D. & Engel, M. S. Evolution of Insects (Cambridge University Press, 2005).

  • 8.

    Gullan, P. J. & Cranston, P. S. The Insects—An Outline of Entomology (Blackwell Publishing, 2005).

  • 9.

    Wedmann, S. A brief review of the fossil history of plant masquerade by insects. Palaeontogr. Abt. B 283, 175–182 (2010).

    Article 

    Google Scholar 

  • 10.

    Bradler, S. & Buckley, T. R. Biodiversity of Phasmatodea in Insect Biodiversity: Science and Society, Vol. II (eds. Foottit, R. G. & Adler, P. H.) 281–313 (Wiley-Blackwell, 2018).

  • 11.

    Wedmann, S., Bradler, S. & Rust, J. The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior. Proc. Natl Acad. Sci.USA 104, 565–569 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Wang, Y. et al. Ancient pinnate leaf mimesis among lacewings. Proc. Natl Acad. Sci.USA 107, 16212–16215 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Garrouste, R. et al. Insect mimicry of plants dates back to the Permian. Nat. Commun. 7, 13735 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Wang, M. et al. Under cover at pre-angiosperm times: a cloaked phasmatodean insect from the early Cretaceous Jehol biota. PLoS ONE 9, e91290 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Svenson, G. J. & Whiting, M. F. Phylogeny of Mantodea based on molecular data: evolution of a charismatic predator. Syst. Entomol. 29, 359–370 (2004).

    Article 

    Google Scholar 

  • 16.

    Suzuki, T. K., Tomita, S. & Sezutsu, H. Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns. BMC Evol. Biol. 14, 229 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Mugleston, J. et al. Reinventing the leaf: Multiple origins of leaf-like wings in katydids (Orthoptera:Tettigoniidae). Invertebr. Syst. 30, 335–352 (2016).

    Article 

    Google Scholar 

  • 18.

    Agudelo R., A. A., Maldaner, C. & Rafael, J. A. Dry leaf or twig mantis? A new genus and species of Acanthopidae with sexually dimorphic cryptic strategies (Insecta: Mantodea). Zootaxa 4560, 331–344 (2019).

    Article 

    Google Scholar 

  • 19.

    Klante, H. Die Wandelnden Blätter – Eine taxonomische Revision der Gattung Phyllium Ill. (Insecta Orthoptera, Phasmatoptera). Zool. Beitr. 22, 49–79 (1976).

    Google Scholar 

  • 20.

    Henry, G. M. Stridulation in the leaf insect. Spolia Zeylan. 12, 217–219 (1922).

    Google Scholar 

  • 21.

    Bian, X., Elgar, M. A. & Peters, R. A. The swaying behavior of Extatosoma tiaratum: Motion camouflage in a stick insect? Behav. Ecol. 27, 83–92 (2016).

    Article 

    Google Scholar 

  • 22.

    Crampton, G. C. The lines of descent of the lower Pterygotan insects, with notes on the relationships of the other forms. Entomol. N. 27, 244–258 (1916).

    Google Scholar 

  • 23.

    Zompro, O. Revision of the genera of the Areolatae, including the status of Timema and Agathemera (Insecta, Phasmatodea). (Abhandlungen des Naturwissenschaftlichen Vereins, 2004).

  • 24.

    Bradler, S., Cliquennois, N. & Buckley, T. R. Single origin of the Mascarene stick insects: ancient radiation on sunken islands? BMC Evol. Biol. 15, 196 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Robertson, J. A., Bradler, S. & Whiting, M. F. Evolution of oviposition techniques in stick and leaf insects (Phasmatodea). Front. Ecol. Evol. 6, 216 (2018).

    Article 

    Google Scholar 

  • 26.

    Bank, S. et al. Reconstructing the nonadaptive radiation of an ancient lineage of ground‐dwelling stick insects (Phasmatodea: Heteropterygidae). Syst. Entomol. 46, 487–507 (2021).

    Article 

    Google Scholar 

  • 27.

    Tilgner, E. H. Systematics of Phasmida (The University of Georgia, 2002).

  • 28.

    Bradler, S. Die Phylogenie der Stab- und Gespenstschrecken (Insecta: Phasmatodea). Species, Phylogeny Evol. 2, 3–139 (2009).

    Google Scholar 

  • 29.

    Buckley, T. R., Attanayake, D. & Bradler, S. Extreme convergence in stick insect evolution: Phylogenetic placement of the Lord Howe Island tree lobster. Proc. R. Soc. B Biol. Sci. 276, 1055–1062 (2009).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Friedemann, K., Wipfler, B., Bradler, S. & Beutel, R. G. On the head morphology of Phyllium and the phylogenetic relationships of Phasmatodea (Insecta). Acta Zool. 93, 184–199 (2012).

    Article 

    Google Scholar 

  • 31.

    Goldberg, J. et al. Extreme convergence in egg-laying strategy across insect orders. Sci. Rep. 5, 7825 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Büscher, T. H., Buckley, T. R., Grohmann, C., Gorb, S. N. & Bradler, S. The evolution of tarsal adhesive microstructures in stick and leaf insects (Phasmatodea). Front. Ecol. Evol. 6, 69 (2018).

    Article 

    Google Scholar 

  • 33.

    Simon, S. et al. Old World and New World Phasmatodea: Phylogenomics resolve the evolutionary history of stick and leaf insects. Front. Ecol. Evol. 7, 345 (2019).

    Article 

    Google Scholar 

  • 34.

    Tihelka, E., Cai, C., Giacomelli, M., Pisani, D. & Donoghue, P. C. J. Integrated phylogenomic and fossil evidence of stick and leaf insects (Phasmatodea) reveal a Permian-Triassic co-origination with insectivores. R. Soc. Open Sci. 7, 201689 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Hennemann, F. H., Conle, O. V., Gottardo, M. & Bresseel, J. On certain species of the genus Phyllium Illiger, 1798, with proposals for an intra-generic systematization and the descriptions of five new species from the Philippines and Palawan (Phasmatodea: Phylliidae: Phylliinae: Phylliini). Zootaxa 2322, 1–83 (2009).

    Article 

    Google Scholar 

  • 36.

    Cumming, R. T., Le Tirant, S. & Hennemann, F. H. A new leaf insect from Obi Island (Wallacea, Indonesia) and description of a new subgenus within Phyllium Illiger, 1798 (Phasmatodea: Phylliidae: Phylliinae). Faunitaxys 7, 1–9 (2019).

    Google Scholar 

  • 37.

    Cumming, R. T., Thurman, J. H., Youngdale, S. & Le Tirant, S. Walaphyllium subgen. nov., the dancing leaf insects from Australia and Papua New Guinea with description of a new species (Phasmatodea, Phylliidae). Zookeys 939, 1–28 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Cumming, R. T., Bank, S., Le Tirant, S. & Bradler, S. Notes on the leaf insects of the genus Phyllium of Sumatra and Java, Indonesia, including the description of two new species with purple coxae (Phasmatodea, Phylliidae). Zookeys 913, 89–126 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Cumming, R. T. et al. Lost lovers linked at long last: Elusive female Nanophyllium mystery solved after a century of being placed in a different genus (Phasmatodea, Phylliidae). Zookeys 969, 43–84 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Cumming, R. T. et al. Cryptophyllium, the hidden leaf insects – descriptions of a new leaf insect genus and thirteen species from the former celebicum species group (Phasmatodea, Phylliidae). Zookeys 1018, 1–179 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Forni, G. et al. Macroevolutionary analyses provide new evidences of phasmids wings evolution as a reversible process. bioRxiv https://doi.org/10.1101/2020.10.14.336354 (2020).

  • 42.

    Kômoto, N., Yukuhiro, K., Ueda, K. & Tomita, S. Exploring the molecular phylogeny of phasmids with whole mitochondrial genome sequences. Mol. Phylogenet. Evol. 58, 43–52 (2011).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 43.

    Tomita, S., Yukuhiro, K. & Kômoto, N. The mitochondrial genome of a stick insect Extatosoma tiaratum (Phasmatodea) and the phylogeny of polyneopteran insects. J. Biotechnol. Sericol. 80, 79–88 (2011).

    Google Scholar 

  • 44.

    Zhou, Z., Guan, B., Chai, J. & Che, X. Next-generation sequencing data used to determine the mitochondrial genomes and a preliminary phylogeny of Verophasmatodea insects. J. Asia. Pac. Entomol. 20, 713–719 (2017).

    Article 

    Google Scholar 

  • 45.

    Forni, G. et al. Phylomitogenomics provides new perspectives on the Euphasmatodea radiation (Insecta: Phasmatodea). Mol. Phylogenet. Evol. 155, 106983 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Song, N., Li, X. & Na, R. Mitochondrial genomes of stick insects (Phasmatodea) and phylogenetic considerations. PLoS ONE 15, e0240186 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Bradler, S., Robertson, J. A. & Whiting, M. F. A molecular phylogeny of Phasmatodea with emphasis on Necrosciinae, the most species-rich subfamily of stick insects. Syst. Entomol. 39, 205–222 (2014).

    Article 

    Google Scholar 

  • 48.

    Zompro, O. & Größer, D. A generic revision of the insect order Phasmatodea: the genera of the areolate stick insect family Phylliidae (Walking Leaves). Spixiana 26, 129–141 (2003).

    Google Scholar 

  • 49.

    Bradler, S. & Buckley, T. R. Stick insect on unsafe ground: Does a fossil from the early Eocene of France really link Mesozoic taxa with the extant crown group of Phasmatodea? Syst. Entomol. 36, 218–222 (2011).

    Article 

    Google Scholar 

  • 50.

    Gittenberger, E. What about non-adaptive radiation? Biol. J. Linn. Soc. 43, 263–272 (1991).

    Article 

    Google Scholar 

  • 51.

    Rundell, R. J. & Price, T. D. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24, 394–399 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Nosil, P. Divergent host plant adaptation and reproductive isolation between ecotypes of Timema cristinae walking sticks. Am. Nat. 169, 151–162 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Silvestro, D. et al. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Chaboureau, A.-C., Sepulchre, P., Donnadieu, Y. & Franc, A. Tectonic-driven climate change and the diversification of angiosperms. Proc. Natl Acad. Sci. USA 111, 14066–14070 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Jud, N. A. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous. Proc. R. Soc. B Biol. Sci. 282, 20151045 (2015).

    Article 

    Google Scholar 

  • 56.

    Herendeen, P. S., Friis, E. M., Pedersen, K. R. & Crane, P. R. Palaeobotanical redux: revisiting the age of the angiosperms. Nat. Plants 3, 17015 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Barba-Montoya, J., dos Reis, M., Schneider, H., Donoghue, P. C. J. & Yang, Z. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. N. Phytol. 218, 819–834 (2018).

    Article 

    Google Scholar 

  • 58.

    Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Bot. 123, 491–503 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Crepet, W. L. The fossil record of angiosperms: requiem or renaissance? Ann. Mo. Bot. Gard. 95, 3–33 (2008).

    Article 

    Google Scholar 

  • 61.

    Lupia, R., Lidgard, S. & Crane, P. R. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25, 305–340 (1999).

    Article 

    Google Scholar 

  • 62.

    Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Feild, T. S. et al. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proc. Natl Acad. Sci. USA 108, 8363–8366 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Crane, P. R. & Lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Mugleston, J. D., Naegle, M., Song, H. & Whiting, M. F. A comprehensive phylogeny of Tettigoniidae (Orthoptera: Ensifera) reveals extensive ecomorph convergence and widespread taxonomic incongruence. Insect Syst. Divers. 2, 1–27 (2018).

    Google Scholar 

  • 66.

    Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Klaus, S., Morley, R. J., Plath, M., Zhang, Y.-P. & Li, J.-T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7, 12132 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234 (2018).

    Article 

    Google Scholar 

  • 69.

    Li, J.-T. et al. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene. Proc. Natl Acad. Sci.USA 110, 3441–3446 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Li, F., Shao, L. & Li, S. Tropical niche conservatism explains the Eocene migration from India to Southeast Asia in ochyroceratid spiders. Syst. Biol. 69, 987–998 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Baldwin, S. L., Fitzgerald, P. G. & Webb, L. E. Tectonics of the New Guinea Region. Annu. Rev. Earth Planet. Sci. 40, 495–520 (2012).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).

    Article 

    Google Scholar 

  • 73.

    Schellart, W. P., Lister, G. S. & Toy, V. G. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth-Sci. Rev. 76, 191–233 (2006).

    Article 

    Google Scholar 

  • 74.

    Jønsson, K. A., Fabre, P.-H., Ricklefs, R. E. & Fjeldså, J. Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proc. Natl Acad. Sci. USA 108, 2328–2333 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Aggerbeck, M., Fjeldså, J., Christidis, L., Fabre, P.-H. & Jønsson, K. A. Resolving deep lineage divergences in core corvoid passerine birds supports a proto-Papuan island origin. Mol. Phylogenet. Evol. 70, 272–285 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Whelan, P. M., Gill, J. B., Kollman, E., Duncan, R. A. & Drake, R. E. Radiometric dating of magmatic stages in Fiji in Geology and Offshore Resources of the Pacific Island Arcs – Tongaregion, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Vol. 2 (eds. Scholl, D. W. & Vallier, T. L.) 415–440 (Circum-Pacific Council Energy and Mineral Resources, Houston, 1985).

  • 77.

    Ewart, F. T. Geological history of the Fiji-Tonga-Samoan region of the S.W. Pacific and some palaeogeographic and biogeographic implications in The Cicadas of the Fiji, Samoa and Tonga Islands, Their Taxonomy and Biogeography (ed. Lyneborg, L.) 15–23 (EJ Brill/Scandinavian Science Press, 1988).

  • 78.

    Rodda, P. Geology of Fiji. South Pac. Appl. Geosci. Comm. Tech. Bull. 8, 131–151 (1994).

    Google Scholar 

  • 79.

    Oliver, P. M. et al. Lizards of the lost arcs: Mid-Cenozoic diversification, persistence and ecological marginalization in the West Pacific. Proc. R. Soc. B Biol. Sci. 285, 20171760 (2018).

    Article 

    Google Scholar 

  • 80.

    Duffels, J. P. & Turner, H. Cladistic analysis and biogeography of the cicadas of the Indo-Pacific subtribe Cosmopsaltriina (Hemiptera: Cicadoidea: Cicadidae). Syst. Entomol. 27, 235–261 (2002).

    Article 

    Google Scholar 

  • 81.

    Liebherr, J. K. Platynini (Coleoptera: Carabidae) of Vanuatu: Miocene diversification on the Melanesian Arc. Invertebr. Syst. 19, 263–295 (2005).

    Article 

    Google Scholar 

  • 82.

    Lucky, A. & Sarnat, E. M. Biogeography and diversification of the pacific ant genus Lordomyrma Emery. J. Biogeogr. 37, 624–634 (2010).

    Article 

    Google Scholar 

  • 83.

    Matos-Maraví, P. et al. An ant genus-group (Prenolepis) illuminates the biogeography and drivers of insect diversification in the Indo-Pacific. Mol. Phylogenet. Evol. 123, 16–25 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Hall, R. Southeast Asia’s changing palaeogeography. Blumea 54, 148–161 (2009).

    Article 

    Google Scholar 

  • 85.

    van Ufford, A. Q. & Cloos, M. Cenozoic tectonics of New Guinea. Am. Assoc. Pet. Geol. Bull. 89, 119–140 (2005).

    Google Scholar 

  • 86.

    Toussaint, E. F. A., Tänzler, R., Rahmadi, C., Balke, M. & Riedel, A. Biogeography of Australasian flightless weevils (Curculionidae, Celeuthetini) suggests permeability of Lydekker’s and Wallace’s Lines. Zool. Scr. 44, 632–644 (2015).

    Article 

    Google Scholar 

  • 87.

    Kodandaramaiah, U., Braby, M. F., Grund, R., Müller, C. J. & Wahlberg, N. Phylogenetic relationships, biogeography and diversification of Coenonymphina butterflies (Nymphalidae: Satyrinae): intercontinental dispersal of a southern Gondwanan group? Syst. Entomol. 43, 798–809 (2018).

    Article 

    Google Scholar 

  • 88.

    Bocek, M. & Bocak, L. The origins and dispersal history of the trichaline net-winged beetles in Southeast Asia, Wallacea, New Guinea and Australia. Zool. J. Linn. Soc. 185, 1079–1094 (2019).

    Article 

    Google Scholar 

  • 89.

    Cozzarolo, C.-S. et al. Biogeography and ecological diversification of a mayfly clade in New Guinea. Front. Ecol. Evol. 7, 233 (2019).

    Article 

    Google Scholar 

  • 90.

    Letsch, H., Balke, M., Toussaint, E. F. A. & Riedel, A. Historical biogeography of the hyperdiverse hidden snout weevils (Coleoptera, Curculionidae, Cryptorhynchinae). Syst. Entomol. 45, 312–326 (2020).

    Article 

    Google Scholar 

  • 91.

    Heads, M. Birds of paradise, biogeography and ecology in New Guinea: a review. J. Biogeogr. 28, 893–925 (2001).

    Article 

    Google Scholar 

  • 92.

    Taylor, A., Keppel, G., Weigelt, P., Zotz, G. & Kreft, H. Functional traits are key to understanding orchid diversity on islands. Ecography 44, 1–12 (2021).

    Article 

    Google Scholar 

  • 93.

    Müller, C. J., Matos-Maraví, P. F. & Beheregaray, L. B. Delving into Delias Hübner (Lepidoptera: Pieridae): fine-scale biogeography, phylogenetics and systematics of the world’s largest butterfly genus. J. Biogeogr. 40, 881–893 (2013).

    Article 

    Google Scholar 

  • 94.

    Toussaint, E. F. A. et al. The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nat. Commun. 5, 4001 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Toussaint, E. F. A., Müller, C. J., Morinière, J., Tänzler, R. & Balke, M. A glide over the Indo-Australian geological maze: repeated transgressions of Lydekker’s and Wallace’s Lines in archdukes, barons and dukes (Nymphalidae: Limenitidinae: Adoliadini). Biol. J. Linn. Soc. 129, 810–821 (2020).

    Article 

    Google Scholar 

  • 96.

    de Bruyn, M., Nugroho, E., Mokarrom Hossain, M., Wilson, J. C. & Mather, P. B. Phylogeographic evidence for the existence of an ancient biogeographic barrier: The Isthmus of Kra Seaway. Heredity 94, 370–378 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Stelbrink, B., Albrecht, C., Hall, R. & von Rintelen, T. The biogeography of Sulawesi revisited: Is there evidence for a vicariant origin of taxa on Wallace’s ‘anomalous island’? Evolution 66, 2252–2271 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Hall, R. Sundaland and Wallacea: geology, plate tectonics and palaeogeography in Biotic Evolution and Environmental Change in Southeast Asia (eds. Gower, D. J. et al.) 32–78 (Cambridge University Press, Cambridge, 2012).

  • 99.

    Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571, 1–41 (2012).

    Article 

    Google Scholar 

  • 100.

    Evans, B. J. et al. Phylogenetics of fanged frogs: Testing biogeographical hypotheses at the interface of the Asian and Australian faunal zones. Syst. Biol. 52, 794–819 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Brown, R. M. et al. Evolutionary processes of diversification in a model island archipelago. Annu. Rev. Ecol. Evol. Syst. 44, 411–435 (2013).

    Article 

    Google Scholar 

  • 102.

    Lohman, D. J. et al. Biogeography of the Indo-Australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).

    Article 

    Google Scholar 

  • 103.

    Brock, P. D., Büscher, T. H. & Baker, E. SF Phasmida: Phasmida Species File (version 5.0) in Species 2000 & ITIS Catalogue of Life, 2020-09-01 Beta (eds. Roskov, Y. & Al., E.) (Naturalis, 2020).

  • 104.

    Whiting, M. F., Bradler, S. & Maxwell, T. Loss and recovery of wings in stick insects. Nature 421, 264–267 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 106.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 107.

    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 109.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 110.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS 
    Article 

    Google Scholar 

  • 111.

    Bouckaert, R. R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 112.

    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 113.

    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 114.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 115.

    Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Article 

    Google Scholar 

  • 116.

    Matzke, N. J. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis with R scripts. Version 1.1.1. https://doi.org/10.5281/zenodo.1478250 (2018).

  • 117.

    R Core Team. R Foundation for Statistical Computing. (2019).

  • 118.

    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar